Self-dual Quiver Moduli and Orientifold Donaldson-thomas Invariants

نویسنده

  • MATTHEW B. YOUNG
چکیده

Motivated by the counting of BPS states in string theory with orientifolds, we study moduli spaces of self-dual representations of a quiver with contravariant involution. We develop Hall module techniques to compute the number of points over finite fields of moduli stacks of semistable self-dual representations. Wall-crossing formulas relating these counts for different choices of stability parameters recover the wall-crossing of orientifold BPS/DonaldsonThomas invariants predicted in the physics literature. In finite type examples the wall-crossing formulas can be reformulated in terms of identities for quantum dilogarithms acting in representations of quantum tor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants

A system of functional equations relating the Euler characteristics of moduli spaces of stable representations of quivers and the Euler characteristics of (Hilbert scheme-type) framed versions of quiver moduli is derived. This is applied to wall-crossing formulas for the Donaldson-Thomas type invariants of M. Kontsevich and Y. Soibelman, in particular confirming their integrality.

متن کامل

Poisson automorphisms and quiver moduli

A factorization formula for certain automorphisms of a Poisson algebra associated with a quiver is proved, which involves framed versions of moduli spaces of quiver representations. This factorization formula is related to wall-crossing formulas for Donaldson-Thomas type invariants of M. Kontsevich and Y. Soibelman [4].

متن کامل

Derived categories of small toric Calabi-Yau 3-folds and curve counting invariants

We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wallcrossing formula for the generating function of the counting invariants of perverse coherent sheaves. As an application we provide some equations on Donaldson-Thomas, Pandeharipande-Thomas a...

متن کامل

8 Poisson automorphisms and quiver moduli Markus

In [4], a framework for the definition of Donaldson-Thomas type invariants for Calabi-Yau categories endowed with a stability structure is developed. One of the key features of this setup is a wall-crossing formula for these invariants, describing their behaviour under a change of stability structure in terms of a factorization formula for automorphisms of certain Poisson algebras defined using...

متن کامل

Degenerate Cohomological Hall Algebra and Quantized Donaldson-Thomas Invariants for m-Loop Quivers

We derive a combinatorial formula for quantized Donaldson-Thomas invariants of the m-loop quiver. Our main tools are the combinatorics of noncommutative Hilbert schemes and a degenerate version of the Cohomological Hall algebra of this quiver. 2010 Mathematics Subject Classification: Primary 16G20, secondary 05E05, 14N35

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015